Global Particle Identification Software

mCglProjection mCglPid mCglPidEval

Mike Bennett PHENIX Core Week December 1998

Goals

For each Reconstructed Track (dCglParticle):

Provide PID Primitives

```
Mass^2 for:

TOF

EMCal timing

EMCal Kinetic Energy

TEC

RICH ring PMT mean timing

Error in Mass^2 (Propagated)
```

- Provide list of Possible PID's GEANT ID's, Confidence Level, Probability
- Flag Tracks with large disagreement between detector PID info
- First Pass Screening on electron candidates Bit Pattern Flag with 5 electron criteria

mCglProjection

Input:

1-to-1 corresp. with dCglTrack Pointers to Hit Positions from: PC2, PC3, TEC, MVD

Algorithm:

Do y vs. x fit from at least 2 points of: TEC in, TEC out, PC2, PC3

Do z vs. r fit from: PC2 and PC3 or MVD and PC2 or PC3

Project to PC2, PC3, RICH, TOF, EMCal Idealized "Fixed-R" detectors except TOF (thanks H. Sako)

Extrapolate MomRec Flight Distance

Output:

At detector radii:

3-position, "Direction Cosines" e.g. dx/dr, Flight Distance

mCglPid

Input:

Reconstructed Momentum (dCglParticle)
Charge Polarity (dCglParticle)
Flight Distances (dCglProjection)
TOF time (dTofReconstructed)
EMCal time, E (dEmcClusterLocal)
TEC [2], dE/dx (dTecPID)
RICH Npmt, chi2, rdisp,time (dCrkPid)
BBC TimeZero (dBbcOut)
Parameters (dCglPidPar)

Algorithm:

Loop over dCglParticle:

- Calculate M^2 and error: TOF,EMCal E, EMCal time, TEC
- Compare M^2 values for large ^2
- Calculate weighted mean M² and error
- For Possible PID hypotheses (based on charge state):

Calculate ^2/d.o.f and Conf. Level

- Check for Electron Cuts
- Check for Antibaryon Cuts

Output--dCglPid

PID Primitives M^2 and errors

PID hypotheses nparticles, particle[10], probability[10], confidence[10]

Information Flags

```
prob_flag (detector disagreements)
elec_flag (electron candidate cuts)
info_flag (what detectors were used)
```

Pointers to Detector Output Tables

Usage Modes:

"Hands On" --plot M^2, define cuts

"Statistical"--use Confidence Levels, plot M^2

"Electron Screening"

"Debugging"--use PID info to improve codes

Mass² from TOF

Mass² From EMCal Energy

Mass² From EMCal Timing

Mass² From TEC

Mass² TOF with track cuts

Pion Confidence Levels

Mass² TOF with CL cuts

Recon. Mom. for CL cuts

Electron Candidate Screening

Bit Pattern Flag for Cuts on:

- EMCal (E-p)/p < cut (here 0.2)
- TEC (dE/dx-dE/dx(e)/dE/dx(e)) < cut (here 0.2)
- RICH Npmt for ring >= cut (here 3)
- RICH ^2 for ring <= cut (here 4.0)
- RICH Rdisp <= cut (here 4.0)

All Tracks

Primary Electrons

Debugging---mCglPidEval

Creates ROOT Ntuple with:

- PISA track ID for dominant contrib. inner track, TEC, TOF, EMCal
- Dom. Contrib. PID
- Projections
 reconstructed and real
 Z vertex, Theta, Phi
 projected and detector
 hit positions at EMCal and TOF
- PID input info
 Detector output
 Projected flight distances
- mCglPid Output
 Mass^2 and errors
 Confidence Levels for , K, p
 Electron Flag

Tracks of primary pions

Code Debugging with PID

Distance between projected TOF positon and actual position

Things to do:

- Understand Mass^2 spectra
 Better statistics
 Work together with detector people
 Decouple tracking from detector response
 (implement detector dom. contrib.)
- Understand Mass² errors What factors dominate CL trends
- Reconcile mCglProjection with DC projection, and improve modelling of detector geometry for intersection
- Implement PID Probability require reloop over particles to determine particle ratios